Логические нейронные сети



         

Практический подход и обоснование структуры логической нейронной сети для системы принятия решений - часть 4


Это и привело к моделированию нейрона - основного логического элемента мозга, к воспроизведению искусственного интеллекта, одним из основных принципов которого является ассоциативное мышление.

На основе логической схемы (рис. 9.15) построим нейронную сеть той же структуры, обученную для решения нашей задачи. Вершины Х1-Х15 соответствуют нейронам-рецепторам входного слоя. От булевых значений их возбуждения перейдем к действительным - к оценкам достоверности соответствующих высказываний ("грамотный" вариант). Эти значения задаются пользователем скорее по наитию, "на глазок", на основе опыта.

Каждая конъюнкция высказываний в записи логических функций (9.1), т.е. совокупность событий, определяет ситуацию. Ситуация является эталоном (эталонной ситуацией), если все составляющие ее события обладают достоверностью, равной единице. В логической схеме каждой конъюнкции соответствует вершина из множества {1, …, 11}. В нейронной сети эти вершины обозначают нейроны промежуточного или скрытого слоя. Нейроны R1-R5 образуют выходной слой; их возбуждение указывает на принимаемое решение.

Как говорилось выше, нейроны рецепторного слоя возбуждаются пользователем, задающим предполагаемую вероятность (или другую оценку) соответствующего события. Остальные нейроны реализуют передаточную функцию таким образом, чтобы возбуждение нейронов-рецепторов распространялось по сети в соответствии со связями. А именно, если, например, на входе сформирован высокий уровень возбуждения нейронов Х1, Х4, Х7 по сравнению с возбуждением других нейронов-рецепторов, то большая величина возбуждения нейрона 2 должна обеспечить самое высокое возбуждение нейрона R2 среди всех нейронов R1-R5 выходного слоя.

Отметим, что таким образом мы пытаемся построить уже обученную нейросеть, где по всем эталонным ситуациям максимального возбуждения должны достигать те нейроны выходного слоя, которые ответственны за решения, соответствующие этим ситуациям. Таким образом, реализуется таблица, о которой говорилось выше.Если же с помощью достоверности событий задавать на входе ситуации, явно не существующие, то нельзя гарантировать правильный ответ. Например, если достоверность всех событий Х1 - Х7 положить равной единице, то столь же бессмысленно будет распределение возбуждения нейронов выходного слоя. Или, если предположить, что мятая бумажка является предъявленным билетом с достоверностью 0,1 (событие Х1), то полагать высоким значение достоверности события Х8 не следует, т.к. эта достоверность является условной вероятностью, и т.д.

То есть логика мышления пользователя и знание элементов теории вероятности должны возобладать.




Содержание  Назад  Вперед