Логические нейронные сети




Нейросетевое воплощение - часть 4


Для этого мы должны ввести в действие новые рецепторы, закрепив их за теми значениями исходных данных или их диапазонами, которые ранее не были представлены. Например, нам придется закрепить рецептор за значением х = 5,7.

Далее, мы должны выделить нейрон выходного слоя и закрепить его за соответствующим правильным решением, которое мы должны получить с помощью модели.

Далее, мы должны выполнить трассировку для того, чтобы задание нового эталона с единичной достоверностью исходных данных приводило к максимальному возбуждению выделенного нейрона выходного слоя, ответственного за получение правильного решения.

Таким образом, сеть может обучаться до тех пор, пока не перестанет давать "сбоев". А поскольку в вероятностном аспекте это вряд ли возможно, то в таком режиме она должна работать в течение всего жизненного цикла, реализуя известную пословицу "Век живи – век учись"…

Здесь наглядно представлена замечательная возможность нейросети: табличная аппроксимация функции многих переменных , снабженная процедурой интерполяции (экстраполяции) для нахождения произвольного значения вектора-аргумента и приближенного соответствующего значения векторной функции. При этом входной вектор возбуждений рецепторов преобразуется в максимальное или усредненное значение возбуждения нейронов выходного слоя, указывающего на соответствующее значение вектора-функции. Так что практически столь простым способом мы построили аппроксимацию векторной функции от векторного аргумента!

Такую аппроксимацию можно выполнить и "в более явном виде", ибо каждая компонента yj решения Y = {y1,…, yп} может отыскиваться отдельно в результате предварительной трассировки (рис. 7.4). То есть сеть может быть построена и обучена так, чтобы заданное значение Х = {x1,…, xт} приводило к максимальному (или усредненному) значению возбуждения нейрона выходного слоя, указывающего соответствующее значение y1

, к максимальному (или усредненному) значению возбуждения другого нейрона выходного слоя, указывающего на значение у2

и т.д. Выходной слой оказывается разбит на области, каждая из которых закреплена за своим параметром уi

, i =1,…, п. Тогда полученное преобразование можно условно записать X

{Вых(у1), Вых(у2),…, Вых(уп)} .

Следует обратить внимание не только на высокую производительность такого рода самообучающихся систем в рабочем режиме, но и на их адаптивность, развиваемость, живучесть и т.д.

Раздельное нахождение управляющих параметров с помощью нейросети

Рис. 7.4.  Раздельное нахождение управляющих параметров с помощью нейросети




Содержание  Назад  Вперед