Логические нейронные сети



Динамизм обучения - часть 5


Рис. 5.3.  Матрица следования для обучения уточненному эталону

Исключим из построенной матрицы строки и столбцы, соответствующие нейронам, участвующим в путях возбуждения, не ведущих в Вых1 (рис. 5.4). (В общем случае в матрице могли сохраниться строки, содержащие нулевые веса.)

Шаг преобразования матрицы следования

Рис. 5.4.  Шаг преобразования матрицы следования

"Спускаемся" по столбцу, соответствующему нейрону С1, и в строке, не являющейся входом, находим, если таковой имеется, первый нулевой элемент. Полагаем его равным единице и отражаем введенное изменение в матрице S. Если нулевого элемента в столбце не нашлось, находим первый "пустой" элемент (или отмеченный транзитивной связью - все равно) и полагаем его равным единице. Этим мы вводим дополнительную связь, отраженную в матрице S. В данном случае такой связью с единичным весом является связь С1

2.

То же проделываем с нейроном С3, введя дополнительную связь с единичным весом С3

2 (рис. 5.5).

Шаг преобразования матрицы следования

Рис. 5.5.  Шаг преобразования матрицы следования

Отметим, что наше решение основано на эвристике, и место появления новых возбужденных связей может быть оспорено. Например, могли быть построены связи С1

2, С3
9, или С1
Вых1, С3
9, или С1
9, С3
Вых1, и т.д.

Мы не приводим еще более усложнившегося рис. 5.1 уточненной сети, предоставив читателю возможность проверить усвоение материала с помощью легкого нажатия красным карандашом прямо в книжке в направлении стрелок, которые исходят из кружочков, помеченных символами С1 и С3, и входят в кружок, помеченный цифрой 2. Однако намек на такое уточнение делаем на рис. 5.6.

Полностью обученная нейросеть (намек)

Рис. 5.6.  Полностью обученная нейросеть (намек)




Содержание  Назад  Вперед