Логические нейронные сети



Динамизм обучения - часть 4


То есть нам необходимо построить путь возбуждения (трассы) B1, A1, C1, C2, C3, C4
Вых1. Однако при его построении мы не хотим изменять уже ранее построенный путь возбуждения B1, A1, C2, C4
Вых1.

Значит, надо проложить трассы, дополнить сеть путем возбуждения C1, C3

Вых1. При этом нам бы хотелось максимально объединить, пересечь, слить этот путь с уже построенным ранее путем возбуждения, ведущим в Вых1.

Преследуя эту цель, мы не должны допустить слияния, влияния этого пути на пути возбуждения, ведущие в другие нейроны выходного слоя. Такая опасность кроется в естественном желании переиспользования нейронов. Ведь слияние двух путей возбуждения заключается в том, что у некоторых нейронов следует повысить веса синапсических связей (скажем, положить равным единице, вместо нуля, окрасить в красный цвет). То есть некоторые нейроны могут стать преемниками возбуждения большего, чем прежде, числа нейронов. А если эти нейроны использовались для получения других решений?

Здесь важно сделать Замечание в дополнение к алгоритму трассировки, рассмотренному в лекции 4:

целесообразно при переиспользовании нейронов, возникающем при последовательном анализе обобщенных эталонов , фиксировать информацию: участвует ли данный нейрон лишь в одном пути возбуждения - к единственному нейрону выходного слоя и к какому именно, или к более чем к одному нейрону выходного слоя. И этого будет вполне достаточно для ликвидации тревог.

Продолжим рассмотрение примера, ведущее к обобщению.

Для нового обобщенного эталона на основе матрицы S, так же, как мы это делали в предыдущем разделе, построим (рис. 5.3) матрицу S*[B1, A1, C1, C2, C3, C4

Вых1].

В соответствии с правилом ее построения в ней представлены лишь те нейроны, для которых число единиц в строке равно соответствующему значению m. Для каждой строки, содержащей единичные элементы, указано, используется ли нейрон для получения единственного решения и какого (признак Выхi), или не единственного (признак отсутствует).

Матрица следования для обучения уточненному эталону




Содержание  Назад  Вперед