Логические нейронные сети




Динамизм обучения - часть 3


Интуиция же нам подсказывает, что надо действовать как-то проще, тем более что мы не постесняемся ввести дополнительные связи в сеть, если понадобится.

Итак, рассмотрим проблему динамического включения новых частных эталонов в состав обобщенного эталона на фоне уже произведенного частичного обучения нейросети.

Пусть предъявление эталонов A1&B1&C2 и A1&B1&C4 ("текущий" обобщенный эталон A1&B1&C2&C4), требующих решения R1, а также предъявление текущих обобщенных эталонов A1&B2&C1&C2&C3, A1&B2&C4&C5, A2&B3&C1&C2&C3&C4&C5, A2&B1&C1&C2&C3&C4&C5, требующих соответственно решений R2, R3, R4, R5, привели к трассировке нейросети (к ее текущему состоянию), представленной на рис. 5.1.

Частично обученная нейронная сеть

Рис. 5.1.  Частично обученная нейронная сеть

Здесь "жирные" связи обладают максимальным значением веса (скорее всего - единичным). Такое состояние получено с помощью алгоритма трассировки, представленного в предыдущей лекции, и это предлагается проверить читателю в порядке закрепления материала.

Матрица следования S, соответствующая получившейся сети, показана на рис. 5.2.

Матрица следования

Рис. 5.2.  Матрица следования

Как видим, сеть оказалась весьма "запутанной" дополнительными связями. Обучение всем обобщенным эталонам сразу (пример в лекции 4) выявляет термы, использующиеся при получении различных решений. Здесь же термы не складывались, нейроны почти не переиспользовались.

Это и привело к формированию большого числа дополнительных связей. (Мы не любим, когда из нас "вытягивают" одно за другим. Мы возмущаемся: "Не тяни, выкладывай все, что тебе нужно!")

Пусть в процессе эксплуатации обученной сети выяснилось, что ситуации (эталоны) А1&B1&C1 и A1&B1&C3, в дополнение к ранее предусмотренным, не только возможны, но требуют того же решения R1. Это означает, что обобщенный эталон A1&B1&C2&C4 мы должны расширить до подобного эталона A1&B1&С1&C2&C3&C4, требующего решения R1.


Содержание  Назад  Вперед