Логические нейронные сети



Нейросеть произвольной структуры - часть 2


Применив принципы комбинаторики и эвристики, выполним трассировку нейросети (рис. 3.13). На рисунке наглядно показано, какая нейросеть была предоставлена, насколько она "неповоротлива", скажем, по сравнению с однослойной "каждый с каждым".

Результат трассировки многослойной нейросети

Рис. 3.13.  Результат трассировки многослойной нейросети

Далее будет представлен формальный алгоритм трассировки. Однако чтобы настроиться на его понимание, следует проанализировать свои действия и сделать следующие выводы:

  1. Мы анализировали слой за слоем, постоянно помня цель - пять комбинаций ситуаций, каждая из которых должна возбудить один из нейронов выходного слоя, не вводя пока жесткое закрепление решений за этими нейронами.
  2. В каждом слое мы собирали частную комбинацию - терм, который можно использовать в последующем, - из доступных термов предыдущего слоя.
  3. Термы, которые пока не могут быть использованы при конструировании из-за их взаимной удаленности, мы запоминали без изменения на анализируемом слое, пытаясь их "подтянуть" в направлении возможного дальнейшего объединения.
  4. Мы старались не "тянуть" термы "поперек" всей сети. В противном случае мы сталкивались бы с проблемой: как избегать пересечений и искажения уже сформированных термов. Все это заставило нас долго не закреплять нейроны выходного слоя за решениями, что в конце концов привело к нарушению естественного порядка следования решений.

Для автоматизации трассировки необходимо матричное представление, только и доступное компьютеру.

Матрица следования, отражающая трассировку нейросети, получается на основе рис. 3.13, если отметить элементы, соответствующие "тонким" линиям, нулевыми весами, а элементы, соответствующие "жирным" линиям, - весами, равными единице.

На рис. 3.14 отражен динамический путь возбуждения, приводящий к решению R1. Он строится по алгоритму, изложенному в разд. 3.5. В данном случае динамические пути возбуждения совпадают со статическими. В общем случае из статического пути возбуждения необходимо исключить нейроны, которые не входят во входной слой и которым соответствуют нулевые строки сформированной матрицы следования.

Динамический путь возбуждения

Рис. 3.14.  Динамический путь возбуждения

Аналогично получают динамические пути возбуждения, приводящие к другим решениям.

Поставим теперь задачу дальнейших исследований: как построить все необходимые пути возбуждения так, чтобы они, возможно, пересекались, - но только для формирования общих термов? А способна ли выбранная нами "готовая" нейросеть вообще справиться с поставленной задачей или предпочтительнее принцип "нейросеть под задачу"?

…Вот теперь-то мы довольны! Мы снабдили дядю Рамзая универсальной обучаемой нейросетью. Теперь, если он, раскаявшись, вновь возлюбит свою благороднейшую профессию, он найдет ей (сети) достойное применение в водворении Васи, Пети & K0 на то спальное место, которого они действительно заслуживают.




Содержание  Назад  Вперед