Логические нейронные сети


Модель мозга - часть 3


Таким способом, предъявляя множество эталонов и регулируя параметры, мы производим обучение сети данному образу. (Математические проблемы несовместимости управления параметрами для разных эталонов оставим в стороне: в живой природе такой процесс проходит успешно, достаточно устойчиво при разумном отличии эталонов. Например, интуитивно ясно, что пытаться заставить один и тот же нейрон выходного слоя возбуждаться и на строчную, и на прописную букву А вряд ли разумно. В лучшем случае он определит, что это буква вообще, а не, скажем, знак пунктуации.)

Обучение заканчивается тогда, когда вероятность "узнавания" достигнет требуемого значения, т.е. необходимость корректировки параметров по предъявляемым эталонам возникает все реже. Теперь можно работать в режиме распознавания - в том ответственном режиме, для которого сеть создавалась. Предъявляем сети различные буквы. Можем быть уверены, что с большой вероятностью, если мы предъявим случайно искаженную и даже зашумленную букву А (конечно, в допустимых пределах), сеть ее распознает, т.е. максимально возбудится соответствующий нейрон выходного слоя.

Можно существенно облегчить обучение, предъявляя эталон "в полном смысле", т.е., например, показывая букву, точно регламентируемую букварем. Тогда предусмотренная (!) степень отклонения от этого эталона, обусловленная почерком, будет влиять на вероятность распознавания этой буквы. Далее мы будем рассчитывать именно на такой способ обучения.

Теперь обобщим "специализацию" входного слоя, связав его с некоторыми характеристиками исходной ситуации (входного вектора), по которой необходимо принимать решение - формировать выходной вектор. Мы учим сеть по эталонным ситуациям, по которым мы знаем решение, а затем в рабочем режиме она выдает нам решение во всем диапазоне ситуаций. При этом она автоматически решает проблему, на какую "знакомую" ей ситуацию более всего похожа введенная ситуация, и, следовательно, какое решение следует выдать. Конечно, с определенной вероятностью правильности.

Такая обработка входной информации при возможном применении в сфере развлечений показана на рис. 2.10 и рис. 2.11.

Отметим, что в экспертных системах требуются точные данные о ситуации, чтобы выдать соответствующее ей заключение. Нейронной сети такой подход "чужд". Она выдает ответ на вопрос "На что похожа данная ситуация?" и, следовательно, какое должно быть заключение. Это еще раз подтверждает, что нейросеть имитирует ассоциативное мышление.

Реакция на угрозу

увеличить изображение
Рис. 2.10.  Реакция на угрозу

Реакция на поощрение

Рис. 2.11.  Реакция на поощрение




Начало  Назад  Вперед



Книжный магазин